lawtomated
  • Home
  • About
  • Law
    • All Access to Justice Future lawyers Knowledge Management Law Firms Open-source law Practice of Law
      Access to Justice

      Divorce disruptors – how LawTech start-up amicable is…

      Buying Software

      Selling to Legal Teams: Attention to Detail

      Buying Software

      Selling to Legal Teams: Who to Sell

      Buying Software

      Selling to Legal Teams: 3 Mistakes To Avoid

      Access to Justice

      Divorce disruptors – how LawTech start-up amicable is…

      Future lawyers

      To Code or Not to Code: should lawyers…

      Knowledge Management

      Google Document Understanding AI – features, screenshots and…

      Knowledge Management

      Structured Data vs. Unstructured Data: what are they…

      Law Firms

      Selling to Legal Teams: Attention to Detail

      Law Firms

      Selling to Legal Teams: Who to Sell

      Law Firms

      Selling to Legal Teams: 3 Mistakes To Avoid

      Law Firms

      Killer software demos that win legaltech pitches

      Open-source law

      Open Source Contracts: Part 4

      Open-source law

      Open Source Contracts: Part 3

      Open-source law

      Open Source Contracts: Part 2

      Open-source law

      Open Source Contracts: Part 1

      Practice of Law

      Why are lawyers unhappy?

  • Legaltech
    • All Buying Software Selling Software
      Events

      Introducing Legal Innovators California – 9th June 2022…

      Events

      Future Lawyer Week UK is coming to London…

      Legaltech

      Is mobile the future of legaltech?

      Legaltech

      Future Lawyer Week 2021!

      Buying Software

      Why you should look beyond legaltech: 4 surprising…

      Buying Software

      Selling to Legal Teams: Attention to Detail

      Buying Software

      Selling to Legal Teams: Who to Sell

      Buying Software

      Selling to Legal Teams: 3 Mistakes To Avoid

      Selling Software

      Selling to Legal Teams: Attention to Detail

      Selling Software

      Selling to Legal Teams: Who to Sell

      Selling Software

      Selling to Legal Teams: 3 Mistakes To Avoid

      Selling Software

      Killer software demos that win legaltech pitches

  • Coding
    • Coding

      Coding for beginners: 10 tips on how you…

      Coding

      Coding for beginners: what to learn, where, how…

      Coding

      Coding for beginners: what to learn, where, how…

      Coding

      To Code or Not to Code: should lawyers…

      Coding

      Open Source Contracts: Part 4

  • Careers
    • All Guide Profile
      Careers

      Legaltech Careers: Sharan Kaur, Legaltech Consultant

      Careers

      Legaltech Careers: Dave Wilson, Managing Director & Founder…

      Careers

      The Legaltech cheat sheet. All you need to…

      Careers

      Leaving the Law for Legaltech, Legal Ops or…

      Guide

      The Legaltech cheat sheet. All you need to…

      Guide

      Leaving the Law for Legaltech, Legal Ops or…

      Guide

      Legaltech Careers: Nitish Upadhyaya, Senior Innovation Manager, A&O’s…

      Guide

      Legaltech Careers Guide: Roles, Salaries & Work /…

      Profile

      Legaltech Careers: Sharan Kaur, Legaltech Consultant

      Profile

      Legaltech Careers: Dave Wilson, Managing Director & Founder…

      Profile

      Legaltech Careers: Mary Bonsor, CEO and Co-Founder of…

      Profile

      Legaltech Careers: Devshi Mehrotra, CEO & Co-Founder of…

  • A.I.
    • All Accuracy, Precision, Recall & F1 Score Deep Learning Hype I.A. Machine Learning Reinforcement Learning Supervised Learning Unsupervised Learning
      A.I.

      Contracts and the data capture challenge

      A.I.

      The evolution of Natural Language Processing and its…

      A.I.

      Legaltech adoption barriers. How many apply to your…

      A.I.

      Explainable AI – All you need to know….

      Accuracy, Precision, Recall & F1 Score

      4 things you need to know about AI:…

      Deep Learning

      The evolution of Natural Language Processing and its…

      Deep Learning

      Explainable AI – All you need to know….

      Deep Learning

      Machine learning with school math. Yes, you learnt…

      Deep Learning

      10 hype busting A.I. articles everyone should read

      Hype

      10 hype busting A.I. articles everyone should read

      Hype

      Can your AI vendor answer these 17 questions?…

      Hype

      Why the “I” in A.I. needs to go

      I.A.

      I.A. vs. A.I. – what’s the difference and…

      Machine Learning

      Contracts and the data capture challenge

      Machine Learning

      The evolution of Natural Language Processing and its…

      Machine Learning

      Explainable AI – All you need to know….

      Machine Learning

      Machine learning with school math. Yes, you learnt…

      Reinforcement Learning

      10 hype busting A.I. articles everyone should read

      Reinforcement Learning

      A.I. Technical: Machine vs Deep Learning

      Supervised Learning

      Machine learning with school math. Yes, you learnt…

      Supervised Learning

      4 things you need to know about AI:…

      Supervised Learning

      10 hype busting A.I. articles everyone should read

      Supervised Learning

      A.I. Technical: Machine vs Deep Learning

      Unsupervised Learning

      Machine learning with school math. Yes, you learnt…

      Unsupervised Learning

      10 hype busting A.I. articles everyone should read

      Unsupervised Learning

      A.I. Technical: Machine vs Deep Learning

      Unsupervised Learning

      Google enters the contract extraction space!

  • Contact
lawtomated
  • Home
  • About
  • Law
    • All Access to Justice Future lawyers Knowledge Management Law Firms Open-source law Practice of Law
      Access to Justice

      Divorce disruptors – how LawTech start-up amicable is…

      Buying Software

      Selling to Legal Teams: Attention to Detail

      Buying Software

      Selling to Legal Teams: Who to Sell

      Buying Software

      Selling to Legal Teams: 3 Mistakes To Avoid

      Access to Justice

      Divorce disruptors – how LawTech start-up amicable is…

      Future lawyers

      To Code or Not to Code: should lawyers…

      Knowledge Management

      Google Document Understanding AI – features, screenshots and…

      Knowledge Management

      Structured Data vs. Unstructured Data: what are they…

      Law Firms

      Selling to Legal Teams: Attention to Detail

      Law Firms

      Selling to Legal Teams: Who to Sell

      Law Firms

      Selling to Legal Teams: 3 Mistakes To Avoid

      Law Firms

      Killer software demos that win legaltech pitches

      Open-source law

      Open Source Contracts: Part 4

      Open-source law

      Open Source Contracts: Part 3

      Open-source law

      Open Source Contracts: Part 2

      Open-source law

      Open Source Contracts: Part 1

      Practice of Law

      Why are lawyers unhappy?

  • Legaltech
    • All Buying Software Selling Software
      Events

      Introducing Legal Innovators California – 9th June 2022…

      Events

      Future Lawyer Week UK is coming to London…

      Legaltech

      Is mobile the future of legaltech?

      Legaltech

      Future Lawyer Week 2021!

      Buying Software

      Why you should look beyond legaltech: 4 surprising…

      Buying Software

      Selling to Legal Teams: Attention to Detail

      Buying Software

      Selling to Legal Teams: Who to Sell

      Buying Software

      Selling to Legal Teams: 3 Mistakes To Avoid

      Selling Software

      Selling to Legal Teams: Attention to Detail

      Selling Software

      Selling to Legal Teams: Who to Sell

      Selling Software

      Selling to Legal Teams: 3 Mistakes To Avoid

      Selling Software

      Killer software demos that win legaltech pitches

  • Coding
    • Coding

      Coding for beginners: 10 tips on how you…

      Coding

      Coding for beginners: what to learn, where, how…

      Coding

      Coding for beginners: what to learn, where, how…

      Coding

      To Code or Not to Code: should lawyers…

      Coding

      Open Source Contracts: Part 4

  • Careers
    • All Guide Profile
      Careers

      Legaltech Careers: Sharan Kaur, Legaltech Consultant

      Careers

      Legaltech Careers: Dave Wilson, Managing Director & Founder…

      Careers

      The Legaltech cheat sheet. All you need to…

      Careers

      Leaving the Law for Legaltech, Legal Ops or…

      Guide

      The Legaltech cheat sheet. All you need to…

      Guide

      Leaving the Law for Legaltech, Legal Ops or…

      Guide

      Legaltech Careers: Nitish Upadhyaya, Senior Innovation Manager, A&O’s…

      Guide

      Legaltech Careers Guide: Roles, Salaries & Work /…

      Profile

      Legaltech Careers: Sharan Kaur, Legaltech Consultant

      Profile

      Legaltech Careers: Dave Wilson, Managing Director & Founder…

      Profile

      Legaltech Careers: Mary Bonsor, CEO and Co-Founder of…

      Profile

      Legaltech Careers: Devshi Mehrotra, CEO & Co-Founder of…

  • A.I.
    • All Accuracy, Precision, Recall & F1 Score Deep Learning Hype I.A. Machine Learning Reinforcement Learning Supervised Learning Unsupervised Learning
      A.I.

      Contracts and the data capture challenge

      A.I.

      The evolution of Natural Language Processing and its…

      A.I.

      Legaltech adoption barriers. How many apply to your…

      A.I.

      Explainable AI – All you need to know….

      Accuracy, Precision, Recall & F1 Score

      4 things you need to know about AI:…

      Deep Learning

      The evolution of Natural Language Processing and its…

      Deep Learning

      Explainable AI – All you need to know….

      Deep Learning

      Machine learning with school math. Yes, you learnt…

      Deep Learning

      10 hype busting A.I. articles everyone should read

      Hype

      10 hype busting A.I. articles everyone should read

      Hype

      Can your AI vendor answer these 17 questions?…

      Hype

      Why the “I” in A.I. needs to go

      I.A.

      I.A. vs. A.I. – what’s the difference and…

      Machine Learning

      Contracts and the data capture challenge

      Machine Learning

      The evolution of Natural Language Processing and its…

      Machine Learning

      Explainable AI – All you need to know….

      Machine Learning

      Machine learning with school math. Yes, you learnt…

      Reinforcement Learning

      10 hype busting A.I. articles everyone should read

      Reinforcement Learning

      A.I. Technical: Machine vs Deep Learning

      Supervised Learning

      Machine learning with school math. Yes, you learnt…

      Supervised Learning

      4 things you need to know about AI:…

      Supervised Learning

      10 hype busting A.I. articles everyone should read

      Supervised Learning

      A.I. Technical: Machine vs Deep Learning

      Unsupervised Learning

      Machine learning with school math. Yes, you learnt…

      Unsupervised Learning

      10 hype busting A.I. articles everyone should read

      Unsupervised Learning

      A.I. Technical: Machine vs Deep Learning

      Unsupervised Learning

      Google enters the contract extraction space!

  • Contact
A.I.Deep LearningMachine LearningReinforcement LearningSupervised LearningUnsupervised Learning

A.I. Technical: Machine vs Deep Learning

by info@lawtomated.com April 28, 2019
April 28, 2019 0 comment
18 min read

There’s lots of confusion surrounding machine learning vs deep learning, what each means and which is better. To put the record straight we will explain the difference between machine learning vs deep learning.

Note this article is principally aimed at non-techies, i.e. legal professionals wanting to understand machine learning vs deep learning and their application to their domain. Naturally it therefore necessarily involves abstraction and simplification.

Like “A.I.”, machine and deep learning get misused and abused. To help out we’ll explain:

  1. What is machine learning?
  2. What is deep learning?
  3. How the above differ from one another?
  4. Their relationship with A.I.
  5. Which of machine or deep learning is better?

The good news is that none of this is complicated. Understanding these terms and their relationships enhances your ability to make informed decisions about:

  • A.I. vendors;
  • the A.I. debate in general; and
  • whether the needs of your business case map to a machine learning vs deep learning solution, or neither!

What is machine learning?

Machine learning (“ML“) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying instead on patterns and inference derived from data.

ML is nothing new

ML was first coined in 1959 by Arthur Samuel, an early pioneer of computer gaming and A.I.

Tom M. Mitchell another computer scientist, later provided a widely quoted formal definition of ML:

“A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E“

Mitchell, T. (1997). Machine Learning. McGraw Hill. 

In practical terms this means designing algorithms that:

  • consume data (the “E” in the above);
  • apply statistical techniques to detect patterns; and
  • thereby “learn” how to perform some task (the “T” in the above).

This process is iterative. Each iteration’s attempt at the particular task is measured against the correct outcome for that task (the “P” in the above). If it improves, the algorithm adjusts itself further in the direction of adjustments that led to that performance improvement. If it gets worse, the opposite action is undertaken by the algorithm.

One method by which many ML / DL techniques achieve the aforementioned optimisation process is called gradient descent, which we will cover in later posts given it is a significant topic in and of itself.

Lastly, depending on the progress of the above process the algorithm is tuned by feeding it more data and / or specific tweaks to the algorithm’s configurations until the desired performance is achieved.

Garbage in, garbage out

Because ML relies upon data, it’s very much garbage in, garbage out (“GIGO“). Lacking access to sufficient quantities of quality data severely limits ML performance, or indeed the general suitability of your problem to a ML solution.

Major Types

ML has three major types:

  1. supervised learning;
  2. unsupervised learning; and
  3. reinforcement learning.

01. Supervised Learning

An algorithm uses training data and feedback from humans to learn the relationship of given inputs to desired outputs.

The training data is labelled by humans, e.g. photo X = cat, photo Y = potato etc. The labeling, together with the human-influenced feedback loop to improve the machine-generated results, explains why we term this type of ML “supervised”.

All supervised learning techniques are either:

  1. classification problems; or
  2. regression problems.

Classification is used to predict discrete responses, that is things with fixed values, e.g. number of students in a class (you can’t have half a student). In a legal context, ML classification algorithms are used to classify whether clause X describes French governing law or English governing law.

Regression is used for predicting continuous responses, that is a value within a range, e.g. the height of students in a class is not fixed but rather a sliding scale of all possible human heights. In a legal context, ML regression algorithms could be used to predict the ideal fee quote for a matter with X, Y and Z variables.

02. Unsupervised Learning

Unlike supervised learning, unsupervised learning does not require labelled data. This is because unsupervised learning techniques are designed to identify patterns inherent in the structure of the data.

For instance, in a legal context, you might use an unsupervised learning algorithm to identify logical groupings of contracts based on their shared syntax. Upon further human inspection, these groupings might reveal useful insights, e.g. documents with certain counterparties being more similar than not vs. documents without other counterparties.

03. Reinforcement Learning

An algorithm that learns to perform a task simply by trying to maximise rewards it receives for its actions.

For example:

  1. The algorithm takes an action on the environment, e.g. makes a move in chess.
  2. It receives a reward if the action brings the machine closer to maximising the total reward, i.e. winning the game not the move, or a penalty if it takes it away from maximising the total reward.
  3. The algorithm optimises for the best series of actions by updating its policies to reflect whether it received a reward or penalty after step (2), in turn improving its ability to achieve the desired outcome over time.

This technique is most often used in game-like situations, e.g. playing games such as Go, self-driving cars, trading strategies, balancing electricity grid loads or optimising auction pricing in real time.

See also

For more on the distinction between supervised and unsupervised learning, including which is better for what plus common points of confusion, please see our detailed explainer here.

We will do a deeper dive into reinforcement learning at some point in the future: stay tuned!

What is deep learning?

Deep learning ( “DL“) is a subtype of machine learning. DL can process a wider range of data resources, requires less data preprocessing by humans (e.g. feature labelling), and can sometimes produce more accurate results than traditional ML approaches (although it requires a larger amount of data to do so).

However, it is computationally more expensive in time to execute, hardware costs and data quantities.

DL is also nothing new

Like ML, DL is not particularly new. Indeed the principal component of DL systems – artificial neural networks – began to take shape in the 1940s, seeing significant breakthroughs in the 1960s and each decade thereafter.

DL’s use has accelerated in recent decades. This is due to:

  1. the availability of cheapening but increasingly powerful computer hardware; and
  2. the crowdsourcing of rich datasets via the internet, which helps create, capture and curate the necessary labelled datasets at massive scale.

It’s all about neural networks

In deep learning, interconnected layers of software-based calculators known as “neurons” form a neural network. The idea is to replicate an abstracted understanding of how we believe the human brain might process similar information and learn from its surroundings and sensory input.

The network ingests vast amounts of input data, processing it through multiple layers of neurons that learn increasingly complex features of the data at each layer:

A neural network classifying dogs vs cats
© Towardsdatascience

The network can then:

  • make a determination about the data, e.g. photo X = dog;
  • learn if its determination is correct, i.e. is photo X in fact dog; and
  • use what it has learned to make determinations about new data, i.e. photo Y = dog but photo Z = not dog.

Neural networks are a huge and complex topic. In later articles, we will try to break these down into more detail given the huge interest and mysticism regarding their abilities.

It’s not that hard to build one from scratch, and even easier to build one using pre-built code libraries but the underlying mathematical concepts can take some time to get your head around. At the end of the day, they combine matrices, linear algebra, and some other clever math but aren’t brains. As always, it’s maths not minds that drive today’s A.I.

Check out the resources at the end of this article if you want to dive deeper (pun intended).

How do machine and deep learning differ?

means and ends

DL is a subfield of ML. In this sense, ML and DL share many characteristics, including their ability to detect patterns from data and learn how to perform a specific task with improving performance over time given further inputs.

There are however many differences between machine learning vs deep learning both in means and application.

The main differences that distinguish machine learning vs deep learning are fourfold:

  1. data consumption;
  2. dedicated hardware;
  3. feature extraction; and
  4. use cases.

01. Data Consumption

DL requires a vast number of labelled samples for it to succeed. For this reason, the explosion of data over the past few decades has enabled DL as a viable technique (along with cheaper and more powerful hardware, of which see below).

However, the quantity of data isn’t in and of itself enough: it needs to be of the right quality, i.e. labelled. Not all data collected is labelled, labelled correctly or in a manner suitable for DL. Nor is such data always publicly accessible.

Where this is the case you (or someone on your behalf) must undertake a data labelling exercise, which is costly in terms of time and money and often requires a defined and rigorous set of procedures, quality controls and domain expertise.

Unfortunately this fact, and its impact on DL’s utility for real-world problems, is often downplayed in discussions concerning DL (and to a similar degree in discussions regarding ML).

02. Dedicated Hardware

The training phase of DL systems typically requires dedicated hardware such as Graphics Processing Units (GPUs) to reduce execution time to something manageable, i.e. hours, days or weeks vs. years. These systems, although increasingly cheaper, are still expensive vs. the needs of simpler ML set-ups.

03. Feature Extraction

Feature extraction (aka feature engineering) is the process of putting domain knowledge into the creation of feature extractors to reduce the complexity of the data and make patterns more visible to learning algorithms.

This process is difficult and expensive in terms of time and expertise.

This is best explained via an example:

  • Assume you are building a system that will learn to classify images as either Car or Not Car.
  • In classical ML, the algorithmic approach will use data to learn whether the image is Car or Not Car. To help this along, it might have been possible for a human to label constituent features indicative of Car (e.g. wheels) in the images thereby providing extra features with which the system can assess.
  • By contrast, a DL solution will also attempt to determine which parts of the image make up the car, e.g. wheels, wing mirrors, headlamps, windscreen etc.
  • As a result, DL can reduce the amount of hard coding humans have to apply to define features in datasets. This is the difference between having to label the image as Car vs. Not Car and having to do that plus label other data about the image such as wheels, windscreen, wing mirror etc that indicate Car or Not Car.

This diagram is a useful summary of the core distinction between machine learning vs deep learning:

Machine Learning vs Deep Learning diagram
https://www.quora.com/What-is-the-difference-between-deep-learning-and-usual-machine-learning

A legal example might be contract due diligence software. Vendors often offer “pre-trained” or “out of the box” provisions that can identify common clauses without the user specifically training the system (as we note in this article, that doesn’t mean it’s magically unsupervised learning as some vendors suggest!).

In that scenario the vendor will have employed domain experts – i.e. lawyers – to label clauses by type, e.g. French governing law, English governing law and so on.

The vendor might also ask the domain experts to label features about those clauses that relate to the overall label. For instance, presence of the word “French” and “governing” and “law” might be additional features worth extracting to improve the algorithm’s performance given the presence of these words (i.e. features) within a clause strongly suggest the label might be “French Governing Law”.

A DL approach would ideally learn that these features are important and extract them along with the attendant classification label.

04. Use Cases

DL is more expensive in terms of:

  • time – both regarding time to set-up and time to run;
  • hardware; and
  • data.

As a result we can generalise and say that DL and ML are best used as follows:

Machine learningDeep Learning
Data VolumeBetter than DL on small datasets.Better than ML on large datasets.
Computational CostCheaper in time to execute and hardware vs. DL.More expensive in time to execute and hardware vs. ML.
AdaptabilityBoth domain specific and application specific ML techniques and feature engineering are required to build high-performance ML models. Therefore the resulting models are less adaptable, even within similar domains.DL techniques can be adapted to different domains and applications far more easily than ML algorithms.

For example, once one understands the underlying deep learning theory for the domain of speech recognition, then learning how to apply deep networks to natural language processing isn’t too challenging since the baseline knowledge is quite similar.
Feature EngineeringML often requires complex feature engineering, which is costly in terms of time and hiring or contracting domain expertise.DL techniques can eliminate or reduce the need for complex feature extraction, thereby reducing the time and cost of that step, albeit potentially in exchange for more expense in time and money regarding hardware and execution time of DL approaches.
InterpretabilityDue to the feature engineering and simpler models, ML systems are generally easier to interpret than DL.

In other words, it’s easier to understand how and why the ML algorithm arrived at an outcome.

This can be incredibly helpful, not to mention necessary (e.g. in regulated environments), to unwind and correct a system that produces incorrect results in unexpected circumstances.
Less capable of interpretation.

Often seen as “blackbox” systems that researchers struggle to unwind and explain how and why the system reached a particular outcome.

That said, there continue to be significant developments in this area that are opening up the blackbox so this distinction may reduce over time.

What is the relationship of ML and DL with A.I.?

Finally, let’s be clear: DL is a subtype of ML and each is a subtype of A.I. When we talk about A.I. today we are really talking about ML and DL.

ML and DL are the major techniques (along with rules and search) via which today’s A.I. happens. There is no “other” A.I. to speak of in practical terms, although there are plenty of theoretical means by which we might create A.I. (including biological or hybrid biological means as explored in Nick Bostrom’s excellent book,Superintelligence).

As we’ve covered in a previous article, another way to categorise today’s A.I. is by it’s ability to generalise or not.

By this, we mean an A.I.’s ability to learn how to perform any given task characteristic of human intelligence vs. being a specialist at one task and one task only. In the case of the former, we say the A.I. is able to generalise its ability from one domain to another whereas in the latter this simply isn’t possible.

Through that lens (i.e. the ends), all of today’s A.I. – whether ML or DL is used (i.e. the means) – are Artificial Narrow Intelligence (“ANI“).

This is because they do one thing well and one thing only. Google DeepMind’s Alpha Go can only play Go, but can’t play chess and is, therefore, an ANI despite its incredibly impressive technical feats.

A nice way to put this together is the below diagram:

Artificial Intelligence, Machine Learning and Deep Learning Venn Diagram

So hopefully you have a better understanding of machine learning, deep learning, the differences between machine learning vs deep learning and their relationship with A.I. In turn, this will assist your understanding and further exploration of A.I. systems for your business problem or general interest!

Bonus Material

nerd into neural networks

In the meantime, if you want to learn more about deep learning and neural networks but can’t wait for our follow-up to this article regarding those topics then check out the below video, which is a friendly and visual way to understand the key components and intuitions regarding DL:

After watching that, provided you want to learn more, check out the additional videos below by Grant Sanderson at the incomparable 3Blue1Blrown (see also their Youtube channel). These videos are probably the best visual introductions to neural networks and some of the math behind them.

Each video gets progressively deeper (pun intended) in understanding and complexity. Seeing things visually with regard to neural networks really helps understand what’s going on, how they work and why.

To do so, we suggest watching the below videos in the order described below:

01. But what *is* a Neural Network?

This one is a gentle top-down introduction to neural networks. For a lot of people, this will be as much as you need / want to know in a legal context.

If you want to understand the underlying mechanics in more detail, progress to videos 2 – 4 below.

02. Gradient descent, how neural networks learn

Gradient descent is a fundamental technique in ML and DL. Essentially it controls how the algorithm decides what adjustments to make after each iteration in order to progress it towards its goal of achieving the desired accuracy of performance at a given task.

Bear in mind this is where things start to get more mathsy!

03. What is backpropagation really doing?

Backpropagation is a tricky topic. If you can understand it, you’re miles ahead of most people. But don’t feel you need to understand this topic unless you are a data scientist or ML engineer, in which case you must.

Essentially backpropagation is how neural networks work back from a given output to determine what adjustments to make to the various “weights” affecting the significance or insignificance of features (and their relationships) across the network for a given input in order to determine the correct output.

04. Backpropagation calculus

Same focus as 3, but goes into greater detail regarding the underlying calculus. Be warned, also very mathsy.

A.I.Artificial IntelligenceDeep LearningMachine LearningReinforcement LearningSupervised LearningUnsupervised Learning
0 comment
previous post
Google Document Understanding AI – features, screenshots and use cases
next post
To Code or Not to Code: should lawyers learn to code?

Related Posts

Contracts and the data capture challenge

October 14, 2021

The evolution of Natural Language Processing and its...

July 19, 2021

Search

Stay in touch

Facebook Twitter Instagram Linkedin Email

Tweets

Great piece by @LegalTechHub1 summarizing critical evaluation criteria for use of LLMs in legal settings. Asking t… https://t.co/3dxfx7UFzw

17-Mar-2023

Reply Retweet Favorite
Unsurprising but exciting. To what extent will this overlap with or challenge the "for legal" apps offering, or lau… https://t.co/Gzw4jYrMAs

16-Mar-2023

Reply Retweet Favorite
GPT4 demo's last 5 mins should be a must watch for legal / tax folks! Spoiler Alert: snippet of US tax code is use… https://t.co/RqcljH3ILK

14-Mar-2023

Reply Retweet Favorite
AI-generated works, artists and IP. Who owns what? Great read (with a US focus) on some key themes re generative… https://t.co/Sn289Ce4zW

06-Mar-2023

Reply Retweet Favorite
A #legaltech rap by @bing chat 🎶 Yo, listen up, I got a story to tell, About legaltech and how it's changing the… https://t.co/ofrNBdfIVj

02-Mar-2023

Reply Retweet Favorite

Popular Posts

  • 1

    Structured Data vs. Unstructured Data: what are they and why care?

  • 2

    Legaltech vs Lawtech. What is the difference between legaltech and lawtech? Is there one and does it matter?

  • 3

    Introducing Legal Innovators California – 9th June 2022 in San Francisco

  • 4

    Explainable AI – All you need to know. The what, how, why of explainable AI

  • 5

    Does legaltech actually help when you’re at the coalface?

Categories

Tags

A.I. AI Artificial Intelligence Avvoka Buying Software Career Profile Careers Coding Contract Data Deep Learning DMS Document Management System EdX Git GitHub Google Hype iManage Javascript Law Law Firms Lawtech Lawyers Legal Legal A.I. Legal Drafting Legal Innovation Legal Ops Legal Teams Legaltech Legatics Linux Machine Learning Marginal Gains Office & Dragons Open-source law Open-source software Open Source Initiative OSS Python Search Selling Software Supervised Learning Unsupervised Learning
  • Facebook
  • Twitter
  • Instagram
  • Linkedin
  • Email
  • Reddit
  • RSS

@2020 - All Rights Reserved Lawtomated